NSDT工具推荐Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

周末遛狗时,我想起一个老问题:神经网络能预测三角形的面积吗?

神经网络非常擅长分类,例如根据花瓣长度和宽度以及萼片长度和宽度预测鸢尾花的种类(setosa、versicolor 或 virginica)。神经网络还擅长一些回归问题,例如根据城镇房屋的平均面积、城镇的税率、与最近大城市的距离等预测城镇的房价中位数。

但神经网络并不适用于普通的数学计算,例如根据底边和高计算三角形的面积。如果你的小学数学有点生疏,我会提醒你,三角形的面积是底边乘以高的 1/2。

我在一家大型科技公司工作,PyTorch 是官方首选的神经网络代码库,也是我个人首选的库。周末遛狗时,我决定使用 PyTorch 1.6 版(当前版本)预测三角形面积。

我编写了一个程序,以编程方式生成 10,000 个训练样本,其中底边和高边的值是 0.1 到 0.9 之间的随机值(因此面积在 0.005 到 0.405 之间)。我创建了一个 2-(100-100-100-100)-1 神经网络 — 2 个输入节点、4 个隐藏层(每个隐藏层有 100 个节点)和一个输出节点。我在隐藏节点上使用了 tanh 激活,在输出节点上没有使用激活。

我使用 10 个样本作为批次对网络进行了 1,000 个周期的训练。

训练后,网络正确地预测了 100% 的训练项目在正确区域的 10% 以内,100% 的训练项目在正确区域的 5% 以内,82% 的训练项目在正确区域的 1% 以内。这是否是一个好结果取决于你的观点。

很有趣。深度学习引起了很多关注,并且有大量关于该主题的研究活动。但这不是魔术。

在我思考三角形的那个周末,我看了一部 1967 年的老间谍电影《比男杀手更致命》,里面的女杀手都留着蜂窝发型。左图:女演员 Elke Sommer 扮演主要杀手。我不知道这种发型是怎么回事。中图和右图:互联网图片搜索返回了不少这样的图片,所以我猜蜂窝发型现在有时仍然在使用。

我的代码如下:

# triangle_area_nn.py
# predict area of triangle using PyTorch NN

import numpy as np
import torch as T
device = T.device("cpu")

class TriangleDataset(T.utils.data.Dataset):
  # 0.40000, 0.80000, 0.16000 
  #   [0]      [1]      [2]
  def __init__(self, src_file, num_rows=None):
    all_data = np.loadtxt(src_file, max_rows=num_rows,
      usecols=range(0,3), delimiter=",", skiprows=0,
      dtype=np.float32)

    self.x_data = T.tensor(all_data[:,0:2],
      dtype=T.float32).to(device)
    self.y_data = T.tensor(all_data[:,2],
      dtype=T.float32).to(device)

    self.y_data = self.y_data.reshape(-1,1)

  def __len__(self):
    return len(self.x_data)

  def __getitem__(self, idx):
    if T.is_tensor(idx):
      idx = idx.tolist()
    base_ht = self.x_data[idx,:]  # idx rows, all 4 cols
    area = self.y_data[idx,:]    # idx rows, the 1 col
    sample = { 'base_ht' : base_ht, 'area' : area }
    return sample

# ---------------------------------------------------------

def accuracy(model, ds):
  # ds is a iterable Dataset of Tensors
  n_correct10 = 0; n_wrong10 = 0
  n_correct05 = 0; n_wrong05 = 0
  n_correct01 = 0; n_wrong01 = 0

  # alt: create DataLoader and then enumerate it
  for i in range(len(ds)):
    inpts = ds[i]['base_ht']
    tri_area = ds[i]['area']    # float32  [0.0] or [1.0]
    with T.no_grad():
      oupt = model(inpts)

    delta = tri_area.item() - oupt.item()
    if delta < 0.10 * tri_area.item():
      n_correct10 += 1
    else:
      n_wrong10 += 1

    if delta < 0.05 * tri_area.item():
      n_correct05 += 1
    else:
      n_wrong05 += 1

    if delta < 0.01 * tri_area.item():
      n_correct01 += 1
    else:
      n_wrong01 += 1

  acc10 = (n_correct10 * 1.0) / (n_correct10 + n_wrong10)
  acc05 = (n_correct05 * 1.0) / (n_correct05 + n_wrong05)
  acc01 = (n_correct01 * 1.0) / (n_correct01 + n_wrong01)

  return (acc10, acc05, acc01)

# ----------------------------------------------------------

class Net(T.nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.hid1 = T.nn.Linear(2, 100)  # 2-(100-100-100-100)-1
    self.hid2 = T.nn.Linear(100, 100)
    self.hid3 = T.nn.Linear(100, 100)
    self.hid4 = T.nn.Linear(100, 100)
    self.oupt = T.nn.Linear(100, 1)

    T.nn.init.xavier_uniform_(self.hid1.weight)  # glorot
    T.nn.init.zeros_(self.hid1.bias)
    T.nn.init.xavier_uniform_(self.hid2.weight)  # glorot
    T.nn.init.zeros_(self.hid2.bias)
    T.nn.init.xavier_uniform_(self.hid3.weight)  # glorot
    T.nn.init.zeros_(self.hid3.bias)
    T.nn.init.xavier_uniform_(self.hid4.weight)  # glorot
    T.nn.init.zeros_(self.hid4.bias)
    T.nn.init.xavier_uniform_(self.oupt.weight)  # glorot
    T.nn.init.zeros_(self.oupt.bias)

  def forward(self, x):
    z = T.tanh(self.hid1(x))  # or T.nn.Tanh()
    z = T.tanh(self.hid2(z))
    z = T.tanh(self.hid3(z))
    z = T.tanh(self.hid4(z))
    z = self.oupt(z)          # no activation
    return z

# ----------------------------------------------------------


def main():
  # 0. make training data file
  np.random.seed(1)
  T.manual_seed(1)
  hi = 0.9; lo = 0.1
  train_f = open("area_train.txt", "w")
  for i in range(10000):
    base = (hi - lo) * np.random.random() + lo
    height = (hi - lo) * np.random.random() + lo
    area = 0.5 * base * height
    s = "%0.5f, %0.5f, %0.5f \n" % (base, height, area)
    train_f.write(s)
  train_f.close()

  # 1. create Dataset and DataLoader objects
  print("Creating Triangle Area train DataLoader ")

  train_file = ".\\area_train.txt"
  train_ds = TriangleDataset(train_file)  # all rows
  bat_size = 10
  train_ldr = T.utils.data.DataLoader(train_ds,
    batch_size=bat_size, shuffle=True)

  # 2. create neural network
  print("Creating 2-(100-100-100-100)-1 regression NN ")
  net = Net()

  # 3. train network
  print("\nPreparing training")
  net = net.train()  # set training mode
  lrn_rate = 0.01
  loss_func = T.nn.MSELoss()
  optimizer = T.optim.SGD(net.parameters(),
    lr=lrn_rate)
  max_epochs = 1000
  ep_log_interval = 100
  print("Loss function: " + str(loss_func))
  print("Optimizer: SGD")
  print("Learn rate: 0.01")
  print("Batch size: 10")
  print("Max epochs: " + str(max_epochs))

  print("\nStarting training")
  for epoch in range(0, max_epochs):
    epoch_loss = 0.0            # for one full epoch
    epoch_loss_custom = 0.0
    num_lines_read = 0

    for (batch_idx, batch) in enumerate(train_ldr):
      X = batch['base_ht']  # [10,4]  base, height inputs
      Y = batch['area']     # [10,1]  correct area to predict

      optimizer.zero_grad()
      oupt = net(X)            # [10,1]  computed 

      loss_obj = loss_func(oupt, Y)  # a tensor
      epoch_loss += loss_obj.item()  # accumulate
      loss_obj.backward()
      optimizer.step()

    if epoch % ep_log_interval == 0:
      print("epoch = %4d   loss = %0.4f" % \
        (epoch, epoch_loss))
  print("Done ")

  # 4. evaluate model
  net = net.eval()
  (acc10, acc05, acc01) = accuracy(net, train_ds)
  print("\nAccuracy (.10) on train data = %0.2f%%" % \
    (acc10 * 100))
  print("\nAccuracy (.05) on train data = %0.2f%%" % \
    (acc05 * 100))
  print("\nAccuracy (.01) on train data = %0.2f%%" % \
    (acc01 * 100))

if __name__ == "__main__":
  main()

原文链接:Can a Neural Network Predict the Area of a Triangle?

BimAnt翻译整理,转载请标明出处